Comparison of HMM experts with MLP experts in the full combination multi-band approach to robust ASR

نویسندگان

  • Astrid Hagen
  • Andrew C. Morris
چکیده

In this paper we apply the Full Combination (FC) multi-band approach, which has originally been introduced in the framework of posterior-based HMM/ANN (Hidden Markov Model/Artificial Neural Network) hybrid systems, to systems in which the ANN (or Multilayer Perceptron (MLP)) is itself replaced by a Multi Gaussian HMM (MGM). Both systems represent the most widely used statistical models for robust ASR (automatic speech recognition). It is shown how the FC formula for the likelihood-based MGMs can easily be derived from the posterior-based approach by simply applying Bayes’ Rule. The experiments show that the Full Combination multi-band system with MGM experts performs better, in all noise conditions tested, than the simple sum and product rules which are normally used. As compared to the baseline full-band system, the FC system shows increased robustness mainly on band-limited noise. The goal of this article is not a performance comparison between Multilayer Perceptrons and Multi Gaussian Models but between the theory of the two approaches, posterior-based vs. likelihood-based FC approach, so results are only given for the MGMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Applications of a Priori Knowledge in Multi-stream Hmm and Hmm/ann Based Asr

Multi-band ASR was largely inspired by the extremely high level of redundancy in the spectral signal representation which can be inferred from Fletcher’s product-oferrors rule for human speech perception. Indeed, the main aim of the multi-band approach is to exploit this redundancy in order to overcome the problem of data mismatch (while making no assumptions about noise type) by focusing recog...

متن کامل

MAP combination of multi-stream HMM or HMM/ANN experts

Automatic speech recognition (ASR) performance falls dramatically with the level of mismatch between training and test data. The human ability to recognise speech when a large proportion of frequencies are dominated by noise has inspired the “missing data” and “multi-band” approaches to noise robust ASR. “Missing data” ASR identifies low SNR spectral data in each data frame and then ignores it....

متن کامل

From Multi-Band Full Combination to Multi-Stream Full Combination Processing in Robust ASR

The multi-band processing paradigm for noise robust ASR was originally motivated by the observation that human recognition appears to be based on independent processing of separate frequency sub-bands, and also by “missing data” results which have shown that ASR can be made significantly more robust to band-limited noise if noisy sub-bands can be detected and then ignored. Of the different mult...

متن کامل

New Approaches Towards Robust and Adaptive Speech Recognition

In this paper, we discuss some new research directions in automatic speech recognition (ASR), and which somewhat deviate from the usual approaches. More specifically, we will motivate and briefly describe new approaches based on multi-stream and multi/band ASR. These approaches extend the standard hidden Markov model (HMM) based approach by assuming that the different (frequency) channels repre...

متن کامل

Multi-stream adaptive evidence combination for noise robust ASR

In this paper, we develop di€erent mathematical models in the framework of the multi-stream paradigm for noise robust automatic speech recognition (ASR), and discuss their close relationship with human speech perception. Largely inspired by Fletcher's ``product-of-errors'' rule (PoE rule) in psychoacoustics, multi-band ASR aims for robustness to data mismatch through the exploitation of spectra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000